In this brief note we explore some of the potential for modern “machine learning” methods to aid in the detection, and therefore defense, of collusive arrangements. We argue that where and when the problem can be formed as one of classification or prediction – are the observed prices during this period well-explained by an algorithm which does explain prices in another period? – machine learning algorithms may be useful supplementary tools. But we also argue that the analysis of collusion rarely ends with such questions. When we need to test a hypothesis, the statistical properties of more traditional econometric methods are likely still required.
Featured News
FTC Pushes Review of CoStar’s Commercial Real Estate Antitrust Case
Jan 31, 2024 by
CPI
UK’s CMA Investigates Ardonagh’s Atlanta Group and Markerstudy Merger
Jan 31, 2024 by
CPI
Greenberg Traurig Grow Financial Regulatory and Compliance Practice
Jan 31, 2024 by
CPI
Dutch Regulator Fines Uber €10 Million for Privacy Violations
Jan 31, 2024 by
CPI
DOJ Investigates AI Competition, Eyes Microsoft’s OpenAI Deal: Bloomberg
Jan 31, 2024 by
CPI
Antitrust Mix by CPI
Antitrust Chronicle® – The Rule(s) of Reason
Jan 29, 2024 by
CPI
Evolving the Rule of Reason for Legacy Business Conduct
Jan 29, 2024 by
CPI
The Object Identity
Jan 29, 2024 by
CPI
In Praise of Rules-Based Antitrust
Jan 29, 2024 by
CPI
The Future of State AG Antitrust Enforcement and Federal-State Cooperation
Jan 29, 2024 by
CPI